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Abstract

An iterative method for estimating the failure probability for time-dependent problems has been
developed. On the first iteration a simple control function has been built using a design point
weighting principle for a serial reliability problem. After time discretization, two points were
chosen to construct the compound deterministic control function. It is based on the time point
when the first maximum of the homogenous solution has occurred and on the point at the end
of the considered time interval. An importance sampling technique is used in order to estimate
the failure probability functional on a set of initial values of state space variables and time.
On the second iteration, the concept of optimal control function developed by Milstein can
be implemented to construct a Markov control which provides better accuracy of the failure
probability estimate than the simple control function. On both iterations, a concept of changing
the probability measure by the Girsanov transformation is utilized. Simultaneously the CPU
time is substantially reduced compared with the crude Monte Carlo procedure.

1 Introduction. Reliability and failure probability.

The evaluation of system performance is one of the objectives of mathematical modelling and numerical
analysis of dynamical systems. The Monte Carlo method is universal for estimating different types of
functionals defining the system reliability, in particular the probability of failure when the system response
exceeds certain critical levels. However, since such failure probabilities are often very small, the standard
implementation of the Monte Carlo method requires an inordinately large sample to secure acceptably
accurate estimates of such quantities. Therefore, as in the time-independent reliability, the methods of
variance reduction, also referred to as importance sampling techniques, can be used. In this paper we
investigate the use of methods from the theory of stochastic control and the Girsanov transformation for
developing a practical importance sampling method for dynamical systems. In particular, an iterative
importance sampling method is presented using both concepts of deterministic and Markov control functions.

Performance and design requirements of a dynamical system restrain the acceptable values of the response
to the safe domain DS ∈ R

n. The probability pS(T ) = P{ES}, where ES = {ω : X(t) = X(t, ω) ∈
DS for every 0 < t ≤ T}, which is the probability that the response X(t) will stay inside the safe domain
throughout the time interval (0, T ]. For simplicity it has been assumed that X(0) = 0. pS(T ) is referred to as
the reliability of the system. Thus the probability of failure pF (T ) can be defined as pF (T ) = 1−pS(T ). The
response is represented by a continuous stochastic process X(t, ω) : (0, T ]×Ω → R

n defined on a (complete)
probability space (Ω,F , P ) and for the time interval (0, T ], where Ω is a space of elementary events, F is a
σ-algebra of measurable sets of Ω and P : F → [0, 1] is a Borel probability measure (Øksendal 1998). Thus
the probability of failure is given

pF (T ) = 1 −
∫

ES

dP (ω) =

∫

Ω

I[g(X(·, ω))] dP (ω) = E(I[g(X)]) (1)

where I[g(X)] is an indicator function defined as follows: I[g(X)] = 0 for ω ∈ ES , I[g(X)] = 1 otherwise.



The dynamic response of the system is assumed to be given by an Itô stochastic differential equation
(SDE)

dX(t) = m(t,X)dt + σ(t,X)dW (t), 0 ≤ s ≤ t ≤ T, X(s) = x. (2)

where X(t) = (X1(t),X2(t), . . . ,Xn(t))T ∈ R
n and W (t) ∈ R is a standard Wiener process with respect to

the measure P . m(t,X), σ(t,X) ∈ R
n are drift and diffusion coefficients, respectively, which satisfy suitable

Lipschitz and growth conditions (Øksendal 1998). The mean value estimator of the failure probability by

the Monte Carlo method is p̂f (T ) = 1
N

∑N

i=1 I[g(xi)] where N is number of samples, xi is a realization of the

process Xt. The numerical error of the crude Monte Carlo procedure has the order of 1/
√

N (Milstein 1995).
By the Girsanov theorem the Wiener process W (t) in Eq. (2) may be substituted with another stochastic

process W̃ (t) defined as (0 ≤ s ≤ t ≤ T )

W̃ (t) = W (t) −
∫ t

s

u(τ, ω)dτ (3)

where is u(τ, ω) is a real stochastic process which satisfies the Novikov condition, for details cf. Øksendal

(1998). W̃ (t) becomes a standard Wiener process on (s, T ] wrt a new measure Pis, which is defined below.
Then the SDE (Eq. 2) takes on form (0 ≤ s ≤ t ≤ T )

dX̃(t) = m(t, X̃)dt + σ(t, X̃)v(t, X̃)dt + σ(t, X̃)dW̃ (t), X̃(s) = x. (4)

where the control function u(t, ω) = v(t, X̃(t, ω)) is given below in Eq.(6).
The transformation of measures may be done according to the Radon-Nikodym theorem. By the Novikov

condition, the function (dP/dPis)
−1 given in Eq.(5) is integrable. The Radon-Nikodym theorem then pro-

vides us with the measure dPis = (dP/dPis)
−1dP referred to above, and we can write

pF (T ; s, x) =

∫

Ω

I[g(X̃)]
( dP

dPis

)
dPis,

( dP

dPis

)
= exp


−

T∫

s

v(τ, X̃(τ))dW̃ (τ) − 1

2

T∫

s

v2(τ, X̃(τ))dτ


 (5)

where the reliability problem is now considered on the time interval (s, T ] with initial condition X(s) = x,
and pF (T ; s, x) denotes the associated failure probability.

The Monte Carlo estimate of the failure probability based on measure Pis is given as (Næss 1999)

p̂F (T ; s, x) = 1
N

∑N

i=1 I[g(x̃i)] (dP/dPis)
i
. Invoking the theory of stochastic control (Øksendal 1998) it can

be shown that the optimal control function for minimizing the functional J = E
[
I2[g(X̃)] (dP/dPis)

2
]

is

(Milstein 1995)

v(s, x) =
1

pF (T ; s, x)

(
σ(s, x) · ∂pF (T ; s, x)

∂x

)
. (6)

From Eq. (6) it follows that the optimal control function depends on the failure probability pF (T ; s, x),
which has to be known for all values of the arguments (s, x) ∈ (0, T ] × R

n. But, of course, if the answer
is known there is no need in controlling the system. On the other hand, if the failure probability can be
calculated approximately on a suitable finite grid in (0, T ] × R

n, then it is possible to construct a control
function that may provide a more accurate estimation of the failure probability.

2 Numerical results and conclusion

The problem of a damped linear oscillator excited by the white noise is given with parameters undamped
natural frequency ω0 = 1, a damping ratio ξ = 0.05, a standard deviation of the white noise γ =

√
0.3 and

a life span T = 50

Ÿ (t) + 2ξω0Ẏ (t) + ω2
0Y (t) = γN(t) ; Y (s) = x, Ẏ (s) = ẋ. (7)



Eq. (7) can be written as an SDE (cf. Eq. (2)). Let X1 = Y and X2 = Ẏ , then in matrix form

dX(t) = AX(t)dt + γb dW (t), X =

[
X1

X2

]
, A =

[
0 1

−2ξω0 −ω2
0

]
, b =

[
0
1

]
. (8)

By replacing the Wiener process W (t) by W̃ (t) as explained in the previous section, Eq. (8) takes on the
form

dX̃(t) = AX̃(t)dt + γb v(t, X̃(t)) dt + γb dW̃ (t). (9)

If v(t,X(t)) is a deterministic open loop control, i.e. v(t,X(t)) = v(t), then Eq. (7) has an explicit analytical

solution Y (t) = F (t − s, x, ẋ) + γ
∫ t

s
h(t − τ)v(τ)dτ + γ

∫ t

s
h(t − τ)dW (τ) where h(t) is an impulse response

function and F (t − s, x, ẋ) is the homogenous solution for the displacement Y (t).
On the first iteration, only the deterministic control based on FORM is used. The idea was developed

by Au and Beck (2001). In Macke and Bucher (2003) the method is called the design point oscillation.
The sampling probability density function is given as the sum of Gaussian distributions weighted at each

time grid point by the coefficient
Φ(−β(tj))∑

m
i=1

Φ(−β(ti))
, where Φ(·) is the normal Gaussian distribution, β(tj) is the

design point index at time tj . Considering the failure function g(x) = xc − x1 (x = (x1, x2)
T ), the simple

control function and expression for the design point index are given as (Næss and Skaug 2000)

vj(t) =
xc − F (tj − s, x, ẋ)

γ
∫ tj

s
h2(tj − τ)dτ

h(tj − t) for s ≤ t ≤ tj ; βj = β(tj) =

√∫ tj

s

v2
j (t)dt. (10)

For the calculation, two time points t1 = T and t2 = t∗ are used. The effect of the control function
for the end of the considered time interval T was explored in Næss and Skaug (2000). The implementation
of the second point t∗ is essential due to nonzero initial values. As it was mentioned in Næss and Skaug
(2000), the controlled paths tend to fail near the end of the time interval T . For some particular cases with
initial values close to the threshold xc, the paths tend to fail rather in the first part of the time interval
around time t∗ than at the end. Time t∗ is the time corresponding to the occurrence of the first maximum
of the homogeneous solution. Otherwise, forcing the samples to cross the threshold at T will end up with
unreasonably low probabilities. In order to get a better estimate, it is suggested to compound these two
control functions with weighting coefficients as mentioned above. The samples of the x1(t), x2(t) and v(t)
for the threshold xc = 4 are shown in Fig. 1(a). The simulations are made for initial values on a rectangular
grid of state-space variables (x1, x2) of size (nx1

×nx2
), and on nt time points. Due to lack of accuracy in the

estimation of the functional by this compound importance sampling density, it is recommended not to use
too fine grid mesh neither in state space, nor in time. The optimal number of grid points in the time domain
was chosen as nt = 5. It should be remarked that the time span T − s should not be less than the natural
quasi-period of the oscillation. If T − s ≤ Tn (Tn = 2π is the natural quasi-period) then controlling the
paths towards the threshold entails very small probabilities, unless the initial values lie in the failure domain
or very closed to it. Then the probability of failure, without any controls, will be a.s. 1. The functional
becomes first order discontinuous in x1 direction and not depending on x2. Thus the control function (Eq. 6)
in the safe domain takes on a form of uncertainty of the type 0

0 , and to avoid numerical difficulties, it is
proposed to extrapolate the control function further in time linearly after last time step. This is not a rude
violation in the mathematical sense because this kind of uncertainties may assume an arbitrary finite value
( 0
0 = M < ∞). Further, the values are interpolated by Hermite polynomials in between the original time

points.
On the second iteration during the numerical integration for each time point, the value of the optimal

Markov control function is taken from 3D data calculated on the first iteration. The value of this approximate
control function at each time step is sought explicitly as the point depending on the state space variables
on the previous time step vi = v(x1(ti−1), x2(ti−1), ti−1). The examples of the sample path and Markov
control function are showed in Fig. 1(b). After the sample path crosses a threshold, the control function is



set to zero. If this is not done, the control will keep the oscillations on the threshold level. This will give the
estimate not of the first passage probability, but the probability of crossing the safe domain margin every
time the path approaches it. In Fig. 1(c) the logarithm of the failure probability vs threshold is plotted.
The crude Monte Carlo method (a solid line, N = 106) is compared with the first iteration values (squares
N = 200) and the second iteration values (triangles N = 100). The final number of samples used in the
Importance sampling simulation is about 104.
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Figure 1: Examples on the sample paths (a,b (–) x1(t), (- -) x2(t), (− · −) v(t) in (a) and v(t, x1, x2) in (b),
(· · · ) threshold level, xc = 4 in (a) and xc = 6.5 in (b)) and failure probability estimates (c)

The second iteration estimates are very much improved compared with those obtained in the first iteration
and they are in good agreement with the crude Monte Carlo estimates until this method breaks down. The
advantage of the proposed method is the possibility to calculate low probabilities of order 10−4 and less
without increasing the number of samples. The variance of the estimates and CPU time are reduced by the
order of 10 compared with Monte Carlo method.

Further work is in progress to use the approximation of optimal control function for the linear oscillator
for nonlinear problems (for instance, Duffing oscillator) which can be appropriately linearized.
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